

CHILD NEUROLOGY: KEY UNDERSTANDINGS AND INTERVENTIONS FOR CHILDREN WITH DEVELOPMENTAL AND EPILEPTIC ENCEPHALOPATHIES

HOW TO IDENTIFY AND MANAGE METABOLIC CAUSES OF DEE

Vincenzo Leuzzi

Unit of Child Neurology and Psychiatry

Department of Human Neuroscience

Sapienza – Università di Roma

vincenzo.leuzzi@uniroma1.it

DISCLOSURES

No potential conflict of interest to report

LEARNING OBJECTIVES

- To define the concept of metabolic and developmental epileptic encephalopathies (MDEE)
- To acquire an etiological classification of MDEE
- To identify the key clinical features suggesting a MDEE
- To learn and master biomarkers of MDEE focusing on those requiring a specific and disease modifying treatment
- To learn the correct diagnostic work-up for a rapid identification of MDEE

KEY MESSAGE

- A relatively restricted number of Developmental Epileptic Encephalopathies (DEE) are due to genetic alterations affecting proteins involved in metabolic pathways.
- Although minority in comparison to other causes of DEE, some of these conditions offer the advantage, if early detected, of a specific treatment which can modify course and outcome of the disease.
- Clinicians should pay particular attention to these metabolic DEE, which can be identified on the base of clinical presentation and specific metabolic biomarkers.
- This course provides the basic knowledges for a correct approach to child with DEE in order to address the diagnosis of metabolic DEE.

REFERENCES

- Morrison-Levy N, Borlot F, Jain P, Whitney R. Early-Onset Developmental and Epileptic Encephalopathies of Infancy: An Overview of the Genetic Basis and Clinical Features. Pediatr Neurol. 2021 Mar;116:85-94.
- Ahmad SF, Ahmad KA, Ng YT. Neonatal Epileptic Encephalopathies. Semin Pediatr Neurol. 2021 Apr;37:100880.
- Johannessen Landmark C, Potschka H, Auvin S, Wilmshurst JM, Johannessen SI, Kasteleijn-Nolst Trenité D, Wirrell EC. The role of new medical treatments for the management of developmental and epileptic encephalopathies: Novel concepts and results. Epilepsia. 2021 Apr;62(4):857-873.
- Mastrangelo M. Actual Insights into Treatable Inborn Errors of Metabolism Causing Epilepsy. J Pediatr Neurosci. 2018 Jan-Mar;13(1):13-23.
- Dulac O, Plecko B, Gataullina S, Wolf NI. Occasional seizures, epilepsy, and inborn errors of metabolism. *Lancet Neurol.* 2014;13:727–39.
- Mastrangelo M, Cesario S. Update on the treatment of vitamin B6 dependent epilepsies. Expert Rev Neurother. 2019 Nov;19(11):1135-1147.
- Grapp M, Just IA, Linnankivi T, Wolf P, Lücke T, Häusler M, et al. Molecular characterization of folate receptor 1 mutations delineates cerebral folate transport deficiency. Brain. 2012;133:2022–31.
- van der Crabben SN, Verhoeven-Duif NM, Brilstra EH, Van Maldergem L, Coskun T, Rubio-Gozalbo E. An update on serine deficiency disorders. *J Inherit Metab Dis.* 2013;36:613–9.
- Wolf B. The neurology of biotinidase deficiency. *Mol Genet Metab.* 2011;104:27–34.
- Leuzzi V, Mastrangelo M, Battini R, Cioni G. Inborn errors of creatine metabolism and epilepsy. Epilepsia. 2013;54:217–27.
- Atwal PS, Scaglia F. Molybdenum cofactor deficiency. Mol Genet Metab. 2016;117:1–4.
- Koch H, Weber YG. The glucose transporter type 1 (Glut1) syndromes. Epilepsy Behav. 2019 Feb;91:90-93.